

STATE OF KNOWLEDGE OF THE GEOTHERMAL PROVINCES OF REPUBLIC OF DJIBOUTI

ARGEO-C1 Conference Addis-Ababa, Ethiopia, 24-29 November 2006

JALLUDIN Mohamed Djibouti, CERD

GEOTHERMAL EXPLORATIONS IN DJIBOUTI

FIRST PHASE

Preliminary field studies Asal rift geophysical studies First geothermal drillings in Asal Rift geothermal area Nord-Goubhet geophysical studies

SECOND PHASE

Hanlé-Gaggadé exploration (field studies and gradient wells) Hanlé geothermal drillings Asal rift new drillings and geophysics Scaling and corrosion study of Asal rift deep reservoir

ARGEO PROJECT PHASE

GEOLOGY AND SURFACE MANIFESTATIONS

HANLE-GAGGADE GEOCHEMICAL STUDIES (AQUATER-CERD 1983)

ELECTRICAL SURVEY OF HANLE PLAIN (AQUATER-CERD 1983)

HANLE GRADIENT WELLS

HANLE DRILLINGS

CERD

100 110 120 130

Temperature °C

HANLE 2

HANLE EXPLORATION OUTCOMES

- Hanlé 1 (1623 m), 72 °C at 1420 m
- Hanlé 2 (2038 m), 124 °C at 2020 m
- Permeability

Hanlé 1: rhyolites, contact rhyolites-basalts, scoriae, dry below 800 m Hanlé 2: basalts, scoriae, dry below 450 m

- Bottom hole core of Hanlé 2: 18.8 My
- Thick crust with 24 °C/km to 36 °C/km

SURFACE MANIFESTATIONS AND GRADIENT WELLS. ASAL RIFT (BRGM-CERD 1973)

GRAVIMETRIC SURVEY. BOUGUER ANOMALY (BRGM 1993)

(mGal)

SUP. -27.0 -28.0 - -27.0 -29.0 - -28.0 -30.0 - -29.0 -31.0 - -30.0 -32.0 - -31.0 -33.0 - -32.0 -34.0 - -33.0 -35.0 - -34.0 -36.0 - -35.0 -37.0 - -36.0 -38.0 - -37.0 -39.0 - -38.0 -40.0 - -39.0

-41.0 - -40.0

-42.0

INF.

AMT SURVEY OF THE ASAL RIFT (BRGM 1993)

(**L**m) SUP. 2000.0 1000.0 - 2000.0 700.0 - 1000.0 500.0 - 700.0 300.0 - 500.0 200.0 - 300.0 100.0 - 200.0 70.0 - 100.0 50.0 -70.0 30.0 -50.0 20.0 -30.0 10.0 -20.0 7.0 - 10.0 5.0 -7.0 3.0 -5.0 2.0 -3.0 INF. 2.0

EM SURVEY OF THE ASAL RIFT (BRGM 1993; ORKUSTOFNUN 1988)

	(L m)		
(Mart)	SUP.		2000.0
(Barris	1000.0	-	2000.0
	700.0	-	1000.0
	500.0	-	700.0
1111	300.0	-	500.0
ALC: N	200.0	-	300.0
	100.0	-	200.0
	70.0	-	100.0
	50.0	-	70.0
	30.0	-	50.0
	20.0	-	30.0
	10.0	-	20.0
	7.0	-	10.0
Little	5.0	-	7.0
	3.0	-	5.0
THE	2.0	-	3.0
AREA.	INF.		2.0

Br VERSUS CI IN ASAL RIFT ZONE

MAJOR ELEMENTS VERSUS Li (San Juan et al. 1990)

 $\delta^{18}\text{O}$ VERSUS δD IN ASAL RIFT AREA

Temperature profiles – Asal geothermal area

Well	Depth (m)	Temp. Max (°C)	Temp. Gradient (°C/100m)
A1	1145	261	18
A2	1554	235	14.3
A3	1316	280	15.51
A4	2013	345	15.2
A5	2105	360	15.2
A6	1761	280	12.75

Interpretative cross section of Asal rift Geothermal area

Production curves of ASAL 3

Production curve of ASAL 1

Scale deposits in 6 inches production line Asal 1 geothermal well (BRGM-CERD 1981)

Sulphide deposits 300 m depth Baryte x3000 Silencer deposits

Asal 3 well testing data

HYDRODYNAMIC PROPERTIES OF THE DEEP RESERVOIR IN ASAL RIFT ZONE

ASAL3 Drawdown tests

		Semilog	Bilog	
Wt ton/h	∆Q ton/h	kh dm	skin	kh dm
79 - 130	51	15.6	- 5	15.6
Multiple		15.9		
155 - 225	70	15.7 5.7	- 5 - 5	16 6
225 - 300	75	6		
300 - 357	57	13.4	- 5	13.4

ASAL4 injectivity test

		Semilog	Bilog
	Q m3/h	kh dm	kh dm
Injectivity	70	0.6	0.7
After injection		0.28	

ASAL6 Drawdown tests

		Semilog	Bilog	
Wt ton/h	∆Q ton/h	kh dm	skin	kh dm
Multiple		4.11		
Multiple		6.4		
65.2 - 78.3	13.1	6.9	10	3.7

ASAL3 recovery tests

Wt ton/h	∆Q ton/h	kh dm
357 - 0	357	7.3
87 - 0	87	5.8

PRESSURE BUILD-UP MEASUREMENTS. ASAL3

- △ Before production phase 2
- Pressure build up after stop fo phase 2 production
- ▲ Estimated by build-up after phase 2

DEEP RESERVOIR RESULTS IN ASAL

- Reservoir recognized by ASAL1, ASAL3 and ASAL 6 in the same area
- Temperature 260 °C to 280 °C
- Reservoir: Dalha basalts (9 4 My), 1050 m to 1300 m
- ASAL 3 production:

Initial characteristics: total mass flow 360 t/h for 12.5 WHP Kh: 6.3 dm TDS in the reservoir: 116 000 ppm Scaling in the well (6 to 10 mm): sulphides (PbS, ZnS) Scaling in surface equipment: amorphous Si with Fe and Mn Severe decrease of the production rate Decrease of the bottom hole pressure: 3.5 bars

ASAL INTERMEDIATE RESERVOIR

- Recognized on all Asal geothermal wells but not yet studied
- Reservoir: Top of Stratoid series and the bottom of Asal series
- Located between 300 m and 600 m
- Temperature 130 °C to 190 °C
- TDS : 50 g/l

NORD-GOUBHET AND ARTA GEOPHYSICAL SURVEYS (BRGM 1983; GEOTHERMICA 1982)

LAKE ABHE AND OBOCK GEOTHERMAL PROSPECTS

GROUNDWATER THERMAL ANOMALIES DJIBOUTI AQUIFER

CONCLUSIONS

HANLE-GAGGADE BASINS ZONE

Drilling results not conclusive in Hanle basin Exploration by drilling not completed Need for new geophysical surveys as EM, AMT Reevaluate possibility of new drillings

ASAL RIFT ZONE

Deep reservoir of high enthalpy demonstrated in ASAL1 area Lateral extension of deep reservoir not yet evident Permeability and circulations controled by fractures Major problem of scaling still to resolve Geophysical surveys describe complex structures of reservoirs Fairly good understanding of fluids origins based on geochemistry and **isotopes**

Shallow reservoir medium enthalpy preliminary significant results Shallow reservoir likely to have good extension

PERSPECTIVES FOR GEOTHERMAL DEVELOPMENT

ASAL RIFT ZONE

Complete exploration for the deep reservoir extension Solutions for the scaling problem of the deep reservoir Complete EM survey of Asal rift zone Study faisability of the mineral extraction from the deep reservoir high TDS fluid Realize exploration with drillings in the shallow reservoir Develop both reservoirs for electricity production

OBOCK ZONE

Realize geophysical surveys with EM and AMT methods Realize geochemical and isotopic studies on the hydrothermal manifestations Exploration drillings Faisability study

LAKE ABHE AND GAGGADE ZONES

Realize geophysical surveys with EM and AMT methods Realize geochemical and isotopic studies on the hydrothermal manifestations Exploration drillings Faisability study

